题目描述
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.
我的解法
解题思路
比较笨的办法,不断将n减去行数。1
2
3
4
5
6
7
8
9
10
11
12
13
class Solution {
public:
int arrangeCoins(int n) {
int i = 1;
while (n > 0){
if (n < i)
return --i;
n -= i++;
}
return --i;
}
};
执行用时 :12 ms, 在所有 C++ 提交中击败了52.52%的用户
内存消耗 :7.2 MB, 在所有 C++ 提交中击败了100.00%的用户
其实可以直接用等差数列求和来求解
1 |
|
执行用时 :4 ms, 在所有 C++ 提交中击败了89.51%的用户
内存消耗 :7.5 MB, 在所有 C++ 提交中击败了100.00%的用户